
Week 5 - Friday

 What did we talk about last time?
 Hash functions
 Birthday paradox

 If a hash value is made up of 8 bytes
 8 bytes = 64 bits
 264 = 18446744073709551616
 So, we need to check one hash against 263 other hashes to have a 50%

probability of matching

 But, by the birthday paradox

𝑘𝑘 ≈ 2 ln 2 264 ≈ 1.18 � 232

 We need a much smaller number to get a collision!

 232 operations is within the reach of modern computers in
seconds, minutes, or hours

 Collisions do not guarantee that the system can be hacked
 A collision with an existing password is necessary
 If the system has 232 users, there's a good probability that two

of them have the same password hash

 Real hashes are usually longer
 Salt makes things a bit more complex
 Most people use weak passwords
 It's easier to guess them
 Social engineering
 Shoulder surfing
 Finding the Post-It with their password

 Still, the mathematical possibilities are interesting …

 Sometimes a document needs to be digitally signed
 Contracts
 Commitment schemes

 Hashes are often signed so that there's less data to sign and
transmit
 Signatures usually use public key crypto like RSA

 But, if the length of the hash is not very long, we can employ
the Birthday Paradox

 Digital signature schemes typically employ public key cryptography
 We need the one way property so that we can verify that it works without

being able to break it
 Full Domain Hash uses RSA to do this:
 Given message M, we find H(M), then raise H(M) to the secret decryption

exponent to find signature S
 S = H(M)d mod n
 To verify the signature, take the signature and raise it to the publicly known

encryption exponent e and compare that to the hash of the message
 If Se mod n = H(M), we feel reasonably sure of two things:
 S is a signature for a M (M has not been changed)
 Only someone who knows the private key for n could have signed it

 Why does it use the hash of the message instead of the message?

 Erica wants to buy a house from Carmen (and cheat her)
 Let's say that they are going to electronically sign a 64-bit

hash of the contract
 Erica creates 232 variations on a contract that Carmen will

agree to
 Erica creates 232 variations on a contract which is highly

advantageous to Erica
 Sound ridiculous?

I, Erica, {hereby, through this document}, {agree, consent} to
{purchase, buy} the {property, estate} {located, which can
be found} at 742 Evergreen Terrace.

A {fair, equitable} {sale, asking} price for this {property,
estate} is the {sum, amount} of $500,000. This {document,
contract} states that this {sum, amount} is {to be paid,
payable} on September 19, 2025 by Erica to Carmen in
{exchange, return} for {ownership, possession} of the
{aforementioned, aforesaid} {property, estate}.

 Having generated the good and bad contracts, Erica can find a
good and bad pair with matching hashes with high probability

 Erica sends the good one to Carmen to sign
 Erica keeps the bad one, brings it to court when Carmen says

that Erica didn't pay the right amount

 Use hash functions with a long digest
 A hash function with an m-bit digest can produce about 2m

different hashes
 But some attacks only need around 2m/2 different messages to

find a collision
 Don't do real estate deals with Erica

Confidentiality

IntegrityAvailability

 You don’t want other people to be able to read your stuff
 Some of your stuff, anyway

 Cryptography, the art of encoding information so that it is
only readable by those knowing a secret (key or password), is
a principle tool used here

 Confidentiality is also called secrecy or privacy

 You don’t want people to mess up your stuff
 You want to know:
 That your important data cannot be easily changed
 That outside data you consider trustworthy cannot be easily changed

either
 There are many different ways that data can be messed up,

and every application has different priorities

 You want to be able to use your stuff
 Many attacks are based on denial of service, simply stopping

a system from functioning correctly
 Availability can mean any of the following:
 The service is present in usable form
 There is enough capacity for authorized users
 The service is making reasonable progress
 The service completes in an acceptable period of time

• Someone read something they weren't supposed toInterception

• Something became unavailable or unusableInterruption

• Someone changed something they weren't supposed toModification

• Someone created fake thingsFabrication

Malicious, human-caused threats often involve one or more of
the following kind of harm:

 As with traditional crime, a computer attacker must have
three things:

• Skills and tools to perform the attackMethod

• Time and access to accomplish the attackOpportunity

• A reason to perform the attackMotive

 There are six common ways of controlling attacks, many of which can be
used together

Prevent
• Remove the

vulnerability from the
system

Deter
• Make the attack harder

to execute

Deflect
• Make another target

more attractive
(perhaps a decoy)

Mitigate
• Make the effect of the

attack less severe

Detect
• Discover that the attack

happened, immediately
or later

Recover
• Recover from the

effects of the attack

 Authentication is the binding of an identity to a subject
 Example: Bill Gates (external entity) is a registered user whose

identity on this system is gatesw (identity of system subject)
 The external identity must provide information to

authenticate based on
1. What the entity knows (passwords)
2. What the entity has (security badge)
3. What the entity is (fingerprints or voice ID)

 Passwords are one of the most common forms of authentication
mechanisms based on what the entity knows

 The password represents authentication information that the
user must know

 The system keeps complementation information that can be
used to check the password

 Real systems generally do not store passwords in the clear but
store hashes of them

 Unix chooses one of 4,096 different hash functions, hashes the
password into an 11-character string, and then prepends 2
characters specifying which hash function was used

 A dictionary attack is an attack based on guessing the password from trial and
error
 A dictionary attack can work on the complementary information (hashes of passwords)
 If this information is unavailable, a dictionary attack can directly attack the

authentication functions (literally trying to log in repeatedly)
 Let P be the probability that an attacker guesses the password over a certain

span of time
 Let G be the number of guesses that can be made per unit time
 Let T be the number of time units of guessing
 Let N be the number of possible passwords
 Then,

N
TG

P ≥

 Backoff
 Force the user to wait longer and longer between failed authentication techniques
 Exponential backoff means that the first time waits 1 second before allowing a user to

log in, the second waits 2 seconds, the third waits 4 seconds, etc.
 Disconnection
 If the connection is remote and requires significant time to connect (dialing, VPN, etc.),

the system can simply break connection after a number of failed attempts
 Disabling
 With n failed attempts, an account is locked until an administrator resets the account

 Jailing
 In jailing, the user is allowed to enter a fake system that looks like the real one
 In theory, jailing can be used to learn more about an attacker's goals
 Attractive data (called honeypots) can be made available, tempting the attacker to

spend more time on the system (until he can be caught)

 Biometrics means identifying humans by their physical and
biological characteristics

 This technology is often seen in spy and science fiction movies
 It does exist, but it's far from perfect

 Like passwords, the actual biometric scans are usually not
stored
 Instead specific features are stored for later comparison

 Biometrics pose unique privacy concerns because the
information collected can reveal health conditions

 People assume that they are more secure than they are
 Attacks:
 Fingerprints can be lifted off a champagne glass
 Voices can be recorded
 Iris recognition can be faked with special contact lenses

 Both false positives and false negatives are possible
 Disabilities can prevent people from using some kinds of biometrics
 It's possible to tamper with transmission from the biometric reader
 Biometric characteristics can change
 Identical twins sometimes pose a problem

 Tokens are physical objects you possess
 Keys
 Badges
 Cell phones
 RFIDs

 Passive tokens take no action and do not change
 Example: photo ID

 Active tokens change or interact with surroundings
 Examples: RFID or magnetic card

 Subjects are human users or programs that are executing on their
behalf

 Objects are things that actions can be performed on
 Files
 Database fields
 Directories
 Hardware devices

 Access modes are the different ways that access can be done:
read, write, modify, delete, etc.

 Access control is the process of managing the access modes that
subjects can have on objects

 Check every access
 The user may no longer have rights to a resource
 The user may have gained rights

 Enforce least privilege
 Least privilege means you get the bare minimum to get your job

done
 Verify acceptable usage
 Access to an object is not enough: Some actions might be legal and

others illegal

Objects

Subjects file 1 file 2 process 1 process 2

process 1 read, write, own read
read, write,

execute, own
write

process 2 append read, own read
read, write,

execute, own

 "Secret writing"
 The art of encoding a message so that its meaning is hidden
 Cryptanalysis is breaking those codes

 Encryption is the process of taking a message and encoding it
 Decryption is the process of decoding the code back into a

message
 A plaintext is a message before encryption
 A ciphertext is the message in encrypted form
 A key is an extra piece of information used in the encryption

process

 A plaintext is M (sometimes P)
 A ciphertext is C
 The encryption function E(x) takes M and converts it into C
 E(M) = C

 The decryption function D(x) takes C and converts it into M
 D(C) = M

 We sometimes specify encryption and decryption functions
Ek(x) and Dk(x) specific to a key k

 Cryptography is supposed to prevent people from reading certain
messages

 Thus, we measure a cryptosystem based on its resistance to an
adversary or attacker

 Kinds of attacks:
 Ciphertext only: Attacker only has access to an encrypted message, with

a goal of decrypting it
 Known plaintext: Attacker has access to a plaintext and its matching

ciphertext, with a goal of discovering the key
 Chosen plaintext: Attacker may ask to encrypt any plaintext, with a goal

of discovering the key
 Others, less common

 Rather than use letters, a system popularized by Ron Rivest is
to use Alice and Bob as the two parties communicating
 Carl or another “C” name can be used if three people are involved

 Trent is a trusted third party
 Eve is used for an evil user who often eavesdrops
 Mallory is used for a malicious user who is usually trying to

modify messages

 The algorithms for encryption often rely on a secret piece of
information, called a key

 We can notate the use of a specific key in either of the two
following ways:
 C = EK(M)
 C = E(K, M)

 In symmetric (or private key) encryption, the encryption key and
the decryption key are the same

 In asymmetric (or public key) encryption, the encryption key and
the decryption key are different

Key K

Encryption Decryption

Symmetric Encryption

Plaintext M Ciphertext C Plaintext M

Encryption Key KE Decryption Key KD

Encryption Decryption

Asymmetric Encryption

Plaintext M Ciphertext C Plaintext M

 There are two kinds of security for encryption schemes
 Unconditionally secure
▪ No matter how much time or energy an attacker has, it is impossible to determine the

plaintext
 Computationally secure
▪ The cost of breaking the cipher exceeds the value of the encrypted information
▪ The time required to break the cipher exceeds the useful lifetime of the information

 We focus on computationally secure, because there is only one
practical system that is unconditionally secure

 "I want them to remain secret for as long as men are capable of
evil" -Avi from Cryptonomicon

 Modulo operator takes the remainder
 Two numbers are said to be congruent modulo n if they have

the same remainder when divided by n
 For example,

39 ≡ 3 (mod 12)
 Addition, subtraction, and multiplication:
 [(a mod n) + (b mod n)] mod n = (a + b) mod n
 [(a mod n) – (b mod n)] mod n = (a – b) mod n
 [(a mod n) x (b mod n)] mod n = (a x b) mod n

 We can’t actually divide
 Instead, we have to find the multiplicative inverse
 The multiplicative inverse of x exists if and only if x is

relatively prime to n
 13 ∙ 5 ≡ 65 ≡ 1 (mod 16)
 So, 13 and 5 are multiplicative inverses mod 16
 But, 0, 2, 4, 6, 8, 10, and 12 do not have multiplicative inverses

mod 16

 A shift cipher encrypts a message by shifting all of the letters
down in the alphabet

 Using the Latin alphabet, there are 26 (well, 25) possible shift
ciphers

 We can model a shift cipher by numbering the letters A, B, C,
… Z as 0, 1, 2, … 25

 Then, we let the key k be the shift
 For a given letter x:

Ek(x) = (x + k) mod 26

 Cryptanalysis of a shift cipher is incredibly easy
 You just have to try 26 possibilities to be sure you have the

right one
 A shift cipher is a simplified version of a substitution cipher

 In a transposition cipher, the letters are reordered but their
values are not changed

 Any transposition cipher is a permutation function of some
kind

 Substitution ciphers cover a wide range of possible ciphers,
including the shift cipher

 In a substitution cipher, each element of the plaintext is
substituted for some corresponding element of the ciphertext

 Monoalphabetic substitution ciphers always use the same
substitutions for a letter (or given sequence of letters)

 Polyalphabetic substitution ciphers use different
substitutions throughout the encryption process

 English language defeats us
 Some letters are used more

frequently than others:
ETAOINSHRDLU

 Longer texts will behave more
consistently

 Make a histogram,
break the cipher

 The Vigenère cipher is a form of polyalphabetic substitution
cipher

 In this cipher, we take a key word and repeat it, over and over,
until it is as long as the message

 Then, we add the repetitions of keywords to our message
mod 26

 The index of coincidence measures the differences in the
frequencies in the ciphertext

 It is the probability that two randomly chosen letters from the
ciphertext are the same

 IC = ∑
=

−
−

25

0

)1(
)1(

1

i
ii FF

NN

Period 1 2 3 4 5 10 Large

Expected IC 0.066 0.052 0.047 0.045 0.044 0.041 0.038

 Some systems look at a "normalized"
index of coincidence, which is found by
multiplying the formula given on the
previous page by the number of letters in
the language
 26 for English
 When reading the literature, both normalized

and unnormalized versions can be called index
of coincidence

 Here are index of coincidence values for a
few common languages

Language Index

English 1.73

French 2.02

German 2.05

Italian 1.94

Portuguese 1.94

Russian 1.76

Spanish 1.94

 The rest is easy
 Try various shifts for each letter of the key so that high

frequency letters (E, T, A) occur with high frequency and low
frequency letters (Q, X, Z) occur with low frequency

 Guess and check

 A One-Time Pad has the property of perfect secrecy or
Shannon secrecy

 Perfect secrecy means that P(M) = P(M|C)
 Remember that it is possible to find a key that would decrypt a

ciphertext to any plaintext
 Thus, learning the ciphertext tells you nothing about the

plaintext

 You can only use it one time
 Otherwise, recovering the key is trivial
 Completely vulnerable to known plaintext attack

 The key is as long as the message
 If you have a way of sending a key that long securely, why not

send the message the same way?
 Generating keys with appropriate levels of randomness

presents a problem

 A common way of dividing ciphers is into stream ciphers and
block ciphers

 Block ciphers divide messages into fixed length parts (or
blocks) and encipher each part with the same key

 Stream ciphers encipher each message character by character
 Some other authors define a stream cipher to be like a block cipher

except that the key changes with each block based on the message

 Confusion is the property of a cryptosystem that changing a single
character in the plaintext should not have a predictable effect

 Diffusion is the property of a cryptosystem that each character in
the plaintext should impact many characters in the ciphertext

 Examples:
 Caesar cipher has poor confusion and no diffusion
 One time pad has good confusion but no diffusion
 Auto-key ciphers may have poor confusion but good diffusion
 AES and DES have good confusion and diffusion within a block

 Data Encryption Standard
 DES is a typical block cipher
 It was chosen as the government's standard for encryption in

1976 (but has since been deprecated)
 DES works on blocks 64 bits in size
 DES uses a 56 bit key
 NSA helped design it… amidst some controversy

 DES is fast
 Easy to implement in software or hardware
 Encryption is the same as decryption
 Triple DES is still standard for many financial applications
 Resistant to differential and linear cryptanalysis (247 and 243

known pairs required, respectively)

 Short key size
 Brute force attack by EFF in 1998 in 56 hours then in 1999 in just over

22 hours
 Brute force attack by University of Bochum and Kiel in 9 days in 2006

(but, using a machine costing only $10,000)
 If you could check 1,000,000,000 keys per second (which is

unlikely with a commodity PC), it would take an average of
417 days to recover a key

 "DES is wrong if you listen to NIST, Double DES ain't no better,
man, that got dissed"

--MC Plus+
 Double DES encrypts a plaintext with DES twice, using two

different keys
 Double DES is susceptible to a meet-in-the-middle attack
 This attack uses a space-time tradeoff
 Although two keys should mean 56 + 56 = 112 bits of security or

2112 time for a brute force attack, the meet-in-the-middle attack
can run in roughly 257 or 258 time, using 256 space

K1 492989976

K2 688857766

K3 282627672

K4 499659602

K5 532263602

K6 498278096

K7 752271744

K8 846172716

864059530 K1

717075649 K2

993328605 K3

991061777 K4

154785500 K5

210537840 K6

688857766 K7

528110960 K8

Encrypt P1 Decrypt C1
 Two pairs of plaintexts and

ciphertexts are needed
 Encrypt P1 with all possible

keys and save them
 Decrypt C1 with all possible

keys
 If the result matches anything in

the list, use the key to encrypt P2
 If that matches C2, you win!

 On the left, I show all the
decryptions, but only the
encryptions need to be stored

 Although susceptible to a brute force attack, DES has no other
major weaknesses
 Double DES can be defeated by an extension of the brute force attack
 What about triple DES?

 Let EK(X) and DK(X) be encryption and decryption using DES with
key K

 Triple DES uses keys K1, K2, and K3
 C = EK1(DK2(EK3(M)))
 Setting K1 = K2 = K3 allows for compatibility with single DES systems

 Triple DES is still a standard for financial transactions with no
known practical attacks

 Advanced Encryption Standard
 Block cipher designed to replace DES
 Block size of 128-bits
 Key sizes of 128, 192, and 256 bits
 Like DES, has a number of rounds (10, 12, or 14 depending on

key size)
 Originally called Rijndael, after its Belgian inventors
 Competed with 14 other algorithms over a 5 year period

before being selected by NIST

 Strengths
 Strong key size
 Fast in hardware and software
 Rich algebraic structure
 Well-studied, open standard

 Weaknesses
 Almost none
 A few theoretical attacks exist on reduced round numbers of AES
 No practical attacks other than side channel attacks

 Sometimes, we need something different
 We want a public key that anyone can use to encrypt a

message to Alice
 Alice has a private key that can decrypt such a message
 The public key can only encrypt messages; it cannot be used

to decrypt messages

 Named for Rivest, Shamir, and Adleman
 Take a plaintext M converted to an integer

 Create an ciphertext C as follows:
C = Me mod n

 Decrypt C back into M as follows:
M = Cd mod n = (Me)d mod n = Med mod n

Term Details Source

M Message to be encrypted Sender

C Encrypted message Computed by sender

n Modulus, n = pq Known by everyone

p Prime number Known by receiver

q Prime number Known by receiver

e Encryption exponent Known by everyone

d Decryption exponent Computed by receiver

φ(n) Totient of n Known by receiver

 To encrypt:
C = Me mod n

 e could be 3 and is often 65537, but is always publically known
 To decrypt:

M = Cd mod n = Med mod n
 We get d by finding the multiplicative inverse of e mod φ(n)
 So, ed ≡ 1 (mod φ(n))

 We know that ed ≡ 1 (mod φ(n))
 This means that ed = kφ(n) + 1 for some nonnegative integer k
 Med = Mkφ(n) + 1 ≡ M∙(Mφ(n))k (mod n)
 By Euler’s Theorem

Mφ(n) ≡ 1 (mod n)
 So, M∙(Mφ(n))k ≡ M (mod n)

 We will refer to several schemes for sending data
 Let X and Y be parties and Z be a message
 { Z } k means message Z encrypted with key k
 Thus, our standard notation will be:
 X → Y: { Z } k
 Which means, X sends message Z, encrypted with key k, to Y

 X and Y will be participants like Alice and Bob and k will be a
clearly labeled key

 A || B means concatenate message A with B

 Typical to key exchanges is the idea of interchange keys and
session keys

 An interchange key is a key associated with a particular user
over a (long) period of time

 A session key is a key used for a particular set of
communication events

 Why have both kinds of keys?

 To be secure, a key exchange whose goal is to allow secret
communication from Alice to Bob must meet this criteria:
1. Alice and Bob cannot transmit their key unencrypted
2. Alice and Bob may decide to trust a third party (Cathy or Trent)
3. Cryptosystems and protocols must be public, only the keys are

secret

 If Bob and Alice have no prior arrangements, classical
cryptosystems require a trusted third party Trent

 Trent and Alice share a secret key kAlice and Trent and Bob
share a secret key kBob

 Here is the protocol:
1. Alice →Trent: {request session key to Bob} kAlice

2. Trent →Alice: { ksession } kAlice || { ksession } kBob

3. Alice → Bob: { ksession } kBob

 Unfortunately, this protocol is vulnerable to a replay attack
 (Evil user) Eve records { ksession } kBob sent in step 3 and also some

message enciphered with ksession (such as "Deposit $500 in Dan's
bank account")

 Eve can send the session key to Bob and then send the replayed
message

 Maybe Eve is in cahoots with Dan to get him paid twice
 Eve may or may not know the contents of the message she is

sending
 The real problem is no authentication

 Suddenly, the sun comes out!
 Public key exchanges should be really easy
 The basic outline is:

1. Alice → Bob: { ksession } eBob

 eBob is Bob's public key
 Only Bob can read it, everything's perfect!
 Except …
 There is still no authentication

 Alice only needs to encrypt the session key with her private
key

 That way, Bob will be able to decrypt it with her public key
when it arrives

 New protocol:
1. Alice → Bob: {{ ksession } dAlice }eBob

 Man in the middle attacks are still possible if Alice gets the
wrong public key for Bob

 Your computer needs to be able read the password file to
check passwords

 But, even an administrator shouldn’t be able to read
everyone’s passwords

 Hash functions to the rescue!

 A cryptographic (or one-way) hash function (called a
cryptographic checksum in the book) takes a variable sized
message M and produces a fixed-size hash code H(M)

 Not the same as hash functions from data structures
 The hash code produced is also called a digest
 It can be used to provide authentication of both the integrity

and the sender of a message
 It allows us to store some information about a message that

an attacker cannot use to recover the message

• Given a digest, should be hard to find a message
that would produce it

• One-way property

Preimage
Resistance

• Given a message m, it should be hard to find a
different message that has the same digest

Second Preimage
Resistance

• Should be hard to find any two messages that hash
to the same digest (collision)

Collision
Resistance

• A small change in input should correspond to a large change in
outputAvalanching

• Hash function should work on a block of data of any sizeApplicability

• Output should be a fixed length Uniformity

• It should be fast to compute a digest in software and hardware
• No longer than retrieval from secondary storageSpeed

 If you are the administrator of a large system, you might
notice that two people have the same password hash

 With people's password habits, the odds are very high that
their passwords are the same

 To add to the semantic security of such schemes extra data
called salt is added to the end of a password

 The salt is usually based on the time the account was created
or the account name

 Message Digest Algorithm 5
 Very popular hashing algorithm
 Designed by Ron Rivest (of RSA fame)
 Digest size: 128 bits
 Security
 Completely broken
 Reasonable size attacks (232) exist to create two messages with the

same hash value
 MD5 hashes are still commonly used to check to see if a

download finished without error

 Secure Hash Algorithm
 Created by NIST
 SHA-0 was published in 1993, but it was replaced in 1995 by SHA-1
 The difference between the two is only a single bitwise rotation, but the NSA

said it was important
 Digest size: 160 bits
 Security
 Broken if you have the resources
 Theoretical attacks running in 251 - 257 time exist
 Google generated two PDF files with the same hash in just over 263 hashes in 2017

 SHA-2 is a successor family of hash functions
 224, 256, 384, 512 bit digests
 Much better security
 Designed by the NSA

 Keccak uses a completely different form of hashing than SHA-
0, SHA-1, and SHA-2

 Although there are only theoretical attacks on SHA-1 and no
real attacks on SHA-2, the attacks on SHA-0 made people
nervous about hash functions following the same design

 Keccak also allows for variable size digests, for added security
 224, 256, 384, and 512 are standard for SHA-3, but it is possible to go

arbitrarily high in Keccak

 If we care about a group of 𝑘𝑘 items which can have a value
between 1 and 𝑛𝑛, the probability that two are the same is:

𝑃𝑃 𝑛𝑛, 𝑘𝑘 = 1 −
𝑛𝑛!

𝑛𝑛 − 𝑘𝑘 !𝑛𝑛𝑘𝑘

 Because this form is a little unwieldy, we have an
approximation that is easier to punch into a calculator:

𝑃𝑃 𝑛𝑛, 𝑘𝑘 > 1 − 𝑒𝑒
−𝑘𝑘(𝑘𝑘−1)

2𝑛𝑛

 If we want to find the number of items needed before there is greater than a 1
2

probability
of collision we get:

1
2 = 1 − 𝑒𝑒

−𝑘𝑘 𝑘𝑘−1
2𝑛𝑛

−
1
2 = −𝑒𝑒

−𝑘𝑘 𝑘𝑘−1
2𝑛𝑛

2 = 𝑒𝑒
𝑘𝑘 𝑘𝑘−1
2𝑛𝑛

ln 2 =
𝑘𝑘 𝑘𝑘 − 1

2𝑛𝑛

 For large 𝑘𝑘, 𝑘𝑘(𝑘𝑘 − 1) ≈ 𝑘𝑘2, giving:
𝑘𝑘 ≈ 2 ln 2 𝑛𝑛 ≈ 1.18 𝑛𝑛

 Digital signature schemes typically employ public key cryptography
 We need the one way property so that we can verify that it works without

being able to break it
 Full Domain Hash uses RSA to do this:
 Given message M, we find H(M), then raise H(M) to the secret decryption

exponent to find signature S
 S = H(M)d mod n
 To verify the signature, take the signature and raise it to the publicly known

encryption exponent e and compare that to the hash of the message
 If Se mod n = H(M), we feel reasonably sure of two things:
 S is a signature for a M (M has not been changed)
 Only someone who knows the private key for n could have signed it

 Why does it use the hash of the message instead of the message?

 Use hash functions with a long digest
 A hash function with an m-bit digest can produce about 2m

different hashes
 But, some attacks only need around 2m/2 different messages

to find a collision

 Exam 1 on Monday

 Office hours from 1:45-4 p.m. canceled today
 Review chapters 1, 2, and 12 for Exam 1
 Finish Assignment 2
 Due tonight by midnight!

 Start on Project 2

	COMP 4290
	Last time
	Questions?
	Assignment 2
	Project 2
	Jennifer Perez Presents
	Attacks Against Hash Functions
	Birthday attack's revenge
	Theoretically awesome …
	Practical issues
	Application: Digital Signature Attacks
	Signing hashes
	Signing scheme example
	Same rules, different game
	216 contracts without trying
	Erica 1, Carmen 0
	The lesson?
	Week 1 Review
	The basics of computer security
	Confidentiality
	Integrity
	Availability
	Harm
	Method, opportunity, motive
	Controls
	Definition of authentication
	Passwords
	Attacking a password system
	Defending authentication functions
	Biometrics
	Problems with biometrics
	Week 2 Review
	Tokens
	Access control
	Access control goals
	Access control matrix example
	Cryptography
	Encryption and decryption
	Notation
	Attacks
	Terminology remix
	Encryption algorithms
	Symmetric vs. asymmetric
	Cryptanalysis
	Review of Modular Arithmetic
	Divided and Conquered
	Week 3 Review
	Definition
	Cryptanalysis of a Shift Cipher
	Definition
	Substitution ciphers
	Frequency Attack
	Vigenère cipher
	Cryptanalysis of Vigenère
	Normalized index of coincidence
	After the length is known…
	Perfect secrecy
	One-Time Pad weaknesses
	Stream and block ciphers
	Confusion and Diffusion
	DES
	DES strengths
	DES weaknesses
	Double DES
	Double DES attack
	Triple DES
	Week 4 Review
	AES
	AES pros and cons
	Public key cryptography
	RSA Algorithm
	The pieces
	How it Works
	Why it Works
	Notation for sending
	Kinds of keys
	Key exchange criteria
	Classical exchange: Attempt 0
	What's the problem?
	Public key exchange
	Easily fixable
	Week 5 Review
	Catch-22
	Definition
	Crucial properties
	Additional properties
	Salt
	MD5
	SHA family
	Keccak (SHA-3)
	General case
	Count it up
	Signing scheme example
	The lesson?
	Upcoming
	Next time…
	Reminders

